Magician’s Corner: 9. Performance Metrics for Machine Learning Models
نویسندگان
چکیده
منابع مشابه
Machine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملMachine Learning for High-Speed Corner Detection
Goal A very fast, high quality corner detector. Contributions 1. The segment-test algorithm for detecting features. 2. Machine learning used to create very efficient implementation: the FAST feature detector. 3. Extensive testing of the new detector against existing ones. Results 1. Extremely fast feature detector: uses less than 7% of the available CPU time in live video feeds. 2. Very high qu...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملLearning Pullback Metrics for Linear Models
In this paper we present an unsupervised differential-geometric approach for learning Riemannian metrics for dynamical models. Given a training set of models the optimal metric is selected among a family of pullback metrics induced by the Fisher information tensor through a parameterized diffeomorphism. The problem of classifying motions, encoded as dynamical models of a certain class, can then...
متن کاملSemantic models for machine learning
In this thesis we present approaches to the creation and usage of semantic models by the analysis of the data spread in the feature space. We aim to introduce the general notion of using feature selection techniques in machine learning applications. The applied approaches obtain new feature directions on data, such that machine learning applications would show an increase in performance. We rev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Radiology: Artificial Intelligence
سال: 2021
ISSN: 2638-6100
DOI: 10.1148/ryai.2021200126